4,219 research outputs found

    Elements of Design for Containers and Solutions in the LinBox Library

    Get PDF
    We describe in this paper new design techniques used in the \cpp exact linear algebra library \linbox, intended to make the library safer and easier to use, while keeping it generic and efficient. First, we review the new simplified structure for containers, based on our \emph{founding scope allocation} model. We explain design choices and their impact on coding: unification of our matrix classes, clearer model for matrices and submatrices, \etc Then we present a variation of the \emph{strategy} design pattern that is comprised of a controller--plugin system: the controller (solution) chooses among plug-ins (algorithms) that always call back the controllers for subtasks. We give examples using the solution \mul. Finally we present a benchmark architecture that serves two purposes: Providing the user with easier ways to produce graphs; Creating a framework for automatically tuning the library and supporting regression testing.Comment: 8 pages, 4th International Congress on Mathematical Software, Seoul : Korea, Republic Of (2014

    Hilbert-Post completeness for the state and the exception effects

    Get PDF
    In this paper, we present a novel framework for studying the syntactic completeness of computational effects and we apply it to the exception effect. When applied to the states effect, our framework can be seen as a generalization of Pretnar's work on this subject. We first introduce a relative notion of Hilbert-Post completeness, well-suited to the composition of effects. Then we prove that the exception effect is relatively Hilbert-Post complete, as well as the "core" language which may be used for implementing it; these proofs have been formalized and checked with the proof assistant Coq.Comment: Siegfried Rump (Hamburg University of Technology), Chee Yap (Courant Institute, NYU). Sixth International Conference on Mathematical Aspects of Computer and Information Sciences , Nov 2015, Berlin, Germany. 2015, LNC

    Combined quantum state preparation and laser cooling of a continuous beam of cold atoms

    Get PDF
    We use two-laser optical pumping on a continuous atomic fountain in order to prepare cold cesium atoms in the same quantum ground state. A first laser excites the F=4 ground state to pump the atoms toward F=3 while a second pi-polarized laser excites the F=3 -> F'=3 transition of the D2 line to produce Zeeman pumping toward m=0. To avoid trap states, we implement the first laser in a 2D optical lattice geometry, thereby creating polarization gradients. This configuration has the advantage of simultaneously producing Sisyphus cooling when the optical lattice laser is tuned between the F=4 -> F'=4 and F=4 -> F'=5 transitions of the D2 line, which is important to remove the heat produced by optical pumping. Detuning the frequency of the second pi-polarized laser reveals the action of a new mechanism improving both laser cooling and state preparation efficiency. A physical interpretation of this mechanism is discussed.Comment: Minor changes according to the recommendations of the referee: - Corrected Fig.1. - Split the graph of Fig.6 for clarity. - Added one reference. - Added two remarks in the conclusion. - Results unchange

    Observation of correlations up to the micrometer scale in sliding charge-density waves

    Full text link
    High-resolution coherent x-ray diffraction experiment has been performed on the charge density wave (CDW) system K0.3_{0.3}MoO3_3. The 2kF2k_F satellite reflection associated with the CDW has been measured with respect to external dc currents. In the sliding regime, the 2kF2k_F satellite reflection displays secondary satellites along the chain axis which corresponds to correlations up to the micrometer scale. This super long range order is 1500 times larger than the CDW period itself. This new type of electronic correlation seems inherent to the collective dynamics of electrons in charge density wave systems. Several scenarios are discussed.Comment: 4 pages, 3 figures Typos added, references remove

    Parallel computation of echelon forms

    Get PDF
    International audienceWe propose efficient parallel algorithms and implementations on shared memory architectures of LU factorization over a finite field. Compared to the corresponding numerical routines, we have identified three main difficulties specific to linear algebra over finite fields. First, the arithmetic complexity could be dominated by modular reductions. Therefore, it is mandatory to delay as much as possible these reductions while mixing fine-grain parallelizations of tiled iterative and recursive algorithms. Second, fast linear algebra variants, e.g., using Strassen-Winograd algorithm, never suffer from instability and can thus be widely used in cascade with the classical algorithms. There, trade-offs are to be made between size of blocks well suited to those fast variants or to load and communication balancing. Third, many applications over finite fields require the rank profile of the matrix (quite often rank deficient) rather than the solution to a linear system. It is thus important to design parallel algorithms that preserve and compute this rank profile. Moreover, as the rank profile is only discovered during the algorithm, block size has then to be dynamic. We propose and compare several block decomposition: tile iterative with left-looking, right-looking and Crout variants, slab and tile recursive. Experiments demonstrate that the tile recursive variant performs better and matches the performance of reference numerical software when no rank deficiency occur. Furthermore, even in the most heterogeneous case, namely when all pivot blocks are rank deficient, we show that it is possbile to maintain a high efficiency

    A survey of young, nearby, and dusty stars to understand the formation of wide-orbit giant planets

    Full text link
    Direct imaging has confirmed the existence of substellar companions on wide orbits. To understand the formation and evolution mechanisms of these companions, the full population properties must be characterized. We aim at detecting giant planet and/or brown dwarf companions around young, nearby, and dusty stars. Our goal is also to provide statistics on the population of giant planets at wide-orbits and discuss planet formation models. We report a deep survey of 59 stars, members of young stellar associations. The observations were conducted with VLT/NaCo at L'-band (3.8 micron). We used angular differential imaging to reach optimal detection performance. A statistical analysis of about 60 % of the young and southern A-F stars closer than 65 pc allows us to derive the fraction of giant planets on wide orbits. We use gravitational instability models and planet population synthesis models following the core-accretion scenario to discuss the occurrence of these companions. We resolve and characterize new visual binaries and do not detect any new substellar companion. The survey's median detection performance reaches contrasts of 10 mag at 0.5as and 11.5 mag at 1as. We find the occurrence of planets to be between 10.8-24.8 % at 68 % confidence level assuming a uniform distribution of planets in the interval 1-13 Mj and 1-1000 AU. Considering the predictions of formation models, we set important constraints on the occurrence of massive planets and brown dwarf companions that would have formed by GI. We show that this mechanism favors the formation of rather massive clump (Mclump > 30 Mj) at wide (a > 40 AU) orbits which might evolve dynamically and/or fragment. For the population of close-in giant planets that would have formed by CA, our survey marginally explore physical separations (<20 AU) and cannot constrain this population

    Recursive double-size fixed precision arithmetic

    Get PDF
    International audienceThis work is a part of the SHIVA (Secured Hardware Immune Versatile Architecture) project whose purpose is to provide a programmable and reconfigurable hardware module with high level of security. We propose a recursive double-size fixed precision arithmetic called RecInt. Our work can be split in two parts. First we developped a C++ software library with performances comparable to GMP ones. Secondly our simple representation of the integers allows an implementation on FPGA. Our idea is to consider sizes that are a power of 2 and to apply doubling techniques to implement them efficiently: we design a recursive data structure where integers of size 2^k, for k>k0 can be stored as two integers of size 2^{k-1}. Obviously for k<=k0 we use machine arithmetic instead (k0 depending on the architecture)

    Type II Shocks Characteristics: Comparison with associated CMEs and Flares

    Full text link
    A number of metric (100-650 MHz) typeII bursts was recorded by the ARTEMIS-IV radiospectrograph in the 1998-2000 period; the sample includes both CME driven shocks and shocks originating from flare blasts. We study their characteristics in comparison with characteristics of associated CMEs and flares.Comment: Recent Advances in Astronomy and Astrophysics: 7th International Conference of the Hellenic Astronomical Society. AIP Conference Proceedings, Volume 848, pp. 238-242 (2006

    Type II and IV radio bursts in the active period October-November 2003

    Full text link
    In this report we present the Type II and IV radio bursts observed and analyzed by the radio spectrograph ARTEMIS IV1, in the 650-20MHz frequency range, during the active period October-November 2003. These bursts exhibit very rich fine structures such fibers, pulsations and zebra patterns which is associated with certain characteristics of the associated solar flares and CMEs.Comment: Recent Advances in Astronomy and Astrophysics: 7th International Conference of the Hellenic Astronomical Society. AIP Conference Proceedings, Volume 848, pp. 199-206 (2006
    • …
    corecore